Enhancing Hebbian Learning to Control Brain Oscillatory Activity.
نویسندگان
چکیده
Sensorimotor rhythms (SMR, 8-15 Hz) are brain oscillations associated with successful motor performance, imagery, and imitation. Voluntary modulation of SMR can be used to control brain-machine interfaces (BMI) in the absence of any physical movements. The mechanisms underlying acquisition of such skill are unknown. Here, we provide evidence for a causal link between function of the primary motor cortex (M1), active during motor skill learning and retention, and successful acquisition of abstract skills such as control over SMR. Thirty healthy participants were trained on 5 consecutive days to control SMR oscillations. Each participant was randomly assigned to one of 3 groups that received either 20 min of anodal, cathodal, or sham transcranial direct current stimulation (tDCS) over M1. Learning SMR control across training days was superior in the anodal tDCS group relative to the other 2. Cathodal tDCS blocked the beneficial effects of training, as evidenced with sham tDCS. One month later, the newly acquired skill remained superior in the anodal tDCS group. Thus, application of weak electric currents of opposite polarities over M1 differentially modulates learning SMR control, pointing to this primary cortical region as a common substrate for acquisition of physical motor skills and learning to control brain oscillatory activity.
منابع مشابه
Psychological, Neurophysiological, and Mental Factors Associated With Gamma-Enhancing Neurofeedback Success
Introduction: Regarding the neurofeedback training process, previous studies indicate that 10%-50% of subjects cannot gain control over their brain activity even after repeated training sessions. This study is conducted to overcome this problem by investigating inter-individual differences in neurofeedback learning to propose some predictors for the trainability of subjects. Methods: Eight hea...
متن کاملLearning to Generate Sequences with Combination of Hebbian and Non-hebbian Plasticity in Recurrent Spiking Neural Networks
Synaptic Plasticity, the foundation for learning and memory formation in the human brain, manifests in various forms. Here, we combine the standard spike timing correlation based Hebbian plasticity with a non-Hebbian synaptic decay mechanism for training a recurrent spiking neural model to generate sequences. We show that inclusion of the adaptive decay of synaptic weights with standard STDP he...
متن کاملOscillatory Brain Activity as underlying Neural Mechanism of Human Memory
It has been proposed that associative learning is accomplished by the formation of cell assemblies and synchronousactivity among the neurons of such an assembly. Induced gamma band responses (GBRs) and phase synchrony betweenelectrode sites are discussed as a signature of activity within a cell assembly. To examine the activation of this networkdue to memory recall, a paired associa...
متن کاملA Spiking Neurocomputational Model of High-Frequency Oscillatory Brain Responses to Words and Pseudowords
Experimental evidence indicates that neurophysiological responses to well-known meaningful sensory items and symbols (such as familiar objects, faces, or words) differ from those to matched but novel and senseless materials (unknown objects, scrambled faces, and pseudowords). Spectral responses in the high beta- and gamma-band have been observed to be generally stronger to familiar stimuli than...
متن کاملEnhancing effect of Tiliacora triandra leaves extract on spatial learning, memory and learning flexibility as well as hippocampal choline acetyltransferase activity in mice
Objective: The present study investigates the effect of Tiliacora triandra leaf extract on spatial learning, memory, and learning flexibility as well as hippocampal choline acetyltransferase (ChAT) activity in mice. Materials and Methods: Thirty male ICR mice were randomly divided into three groups including 10% Tween 80, T. triandra 300 mg/kg and T. triandra 600 mg/kg. All administrations wer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cerebral cortex
دوره 25 9 شماره
صفحات -
تاریخ انتشار 2015